
Tammy Dahlgren, Tom Epperly,
Scott Kohn, & Gary Kumfert

GKK 2CASC

Format

Recap of Gatlinburg Talk...

... only in Reverse...

... Conceptually, not literally.

GKK 3CASC

Example #1: 1-D Vectors

0.0
1.1
2.2

3.3
4.4
5.5

.9

.8

.7

.6

.5

.4

0
0
1
2

3
4
5

1

2
3

4
5

double d = x.dot(y);double d = x.dot(y);

x

x

y

y

y

GKK 4CASC

Example #2: Undirected Graph

1 2

0

3 4 5

1 2

0

3

4 5

6 7

6 7 8

9 10

11

8

9 10

11

GKK 5CASC

Big Picture

� What is the largest set of MxN
Redistributable components?

� How do we allow developers to
add to this set?

� Generality over Performance

GKK 6CASC

Other Complicated Tasks in CS

� GUI APIs
� Java-AWT: must extend “Frame”
� Lots of default behaviors inherited

� Threaded Apps
� Java: class must implement

Runnable
� Must implement methods so JVM can

interact with class correctly

GKK 7CASC

Last few Rhetorical Questions

� Can we employ a similar strategy
for MxN?

� Corollaries
� If so, which one?
� How?

GKK 8CASC

Tale of two Customers

� Library Developer
� Familiar with

Component Tech.
� Formal Software

Training

� Application
Programmer

� May not be aware
of using Babel

� May have no
formal SW training

Developer User

GKK 9CASC

Zen of Babel

� If its difficult...
... let Babel do it.

� If its impossible for Babel...
... let developer do it.

� If its difficult for user...
... shift burden to Babel or

Developer if at all possible

GKK 10CASC

Solution

� Babel provides a MUX in its runtime
� Parallel Distributed Components

MUST IMPLEMENT the
MxNRedistributable Interface

� All communication & data
redistribution details hidden from
user.

except performance, of course! ;-)

GKK 11CASC

Ramifications
� User still programs in SPMD model
� User may not selectively exclude

processes or threads from a
parallel RMI

� User may not alter communication
modes (synch v. asynch, etc.)
� Determined by Babel
� Modifiers may be available to

developer in SIDL... e.g. “oneway” !

GKK 12CASC

Ramifications (2)

� No MPI communicator connecting
M to N
� May not know M and N when driver is

launched
� M = N, M<N, M>N, M=1, N=1, Okay
� Non-rectilinear Data, No Problem
� Owner Computes

GKK 13CASC

Now Drilling One Level
Deeper...

GKK 14CASC

Babel Inserts Code between
User & Developer
� language interoperability

� COMPLEX*(4) == complex<float>
� virtual function dispatch

� call foo() on interface, dispatch to
implementing class

� implement RMI
� remap distributed data

no industry
precedent

GKK 15CASC

Impls and Stubs and Skels
� Application: uses components in

user’s language of choice
� Client Side Stubs: translate from

application language to C
� Internal Object Representation:

Always in C
� Server Side Skeletons: translates

IOR (in C) to component
implementation language

� Implementation: component
developers choice of language.
(Can be wrappers to legacy code)

Application

Stubs

IORs

Skels

Impls

GKK 16CASC

Out of Process Components

Application

Stubs

IPC

IORs

Skels

IPC

IORs

Impls

GKK 17CASC

Remote Components

Internet

Line Protocol

Line Protocol

Unmarshaler

Skels

IORs

Impls

Application

Stubs

IORs

Marshaler

GKK 18CASC

All MxN Components inherit
one interface
� All Distributed Objects are

Containers
� They are by nature subdivisible
� If an interface can make any

container “look like” a 1-D vector

then a MUX is little more than a
KELP Mover

GKK 19CASC

MxNRedistributable Interface
interface Serializable {

store(in Stream s);
load(in Stream s);

};

interface MxNRedistributable extends Serializable {

int getGlobalSize();
local int getLocalSize();
local array<int,1> getLocal2Global();

split (in array<int,1> maskVector,
out array<MxNRedistributable,1> pieces);

merge(in array<MxNRedistributable,1> pieces);
};

GKK 20CASC

We saw something similar
yesterday
� Kelp uses callbacks for user to define copy,

serialization, etc.
� I’m using an interface that user must

implement
� Kelp uses rectilinear regions
� I’m using explicit local-global maps

(for now)
� Kelp has a Mover

� most of the “guts” of the solution
� that depends on the user callbacks

� I’m calling it a MUX

GKK 21CASC

MxNRedistributable Interface
in action
� Last Time

� I started with object creation
� I handled problems as they aroze

� This time
� I’ll just do the MxN stuff
� I’ll gloss over details altogether

GKK 22CASC

Example #2: Undirected Graph

1 2

0

3 4 5

1 2

0

3

4 5

6 7

6 7 8

9 10

11

8

9 10

11

GKK 23CASC

pp->minSpanTree(graph);

1 2

0

3 4 5

6

2

3 4 5

6 7 8

9 10

5

6 7 8

9 10

11

orb

orb

graph

MUX

graph

MUX

pp

pp

� MUX queries graph for
global size (12)

� Graph determines
particular
data layout
(blocked)

0
1
2
3
4
5

6
7
8
9

10
11

require

require

� MUX is
invoked to
guarantee
that layout before render
implementation is called

GKK 24CASC

MUX generates communication
schedules (client & server)

2

3 4 5

6 7 8

9 10

orb

orb

graph

MUX

graph

MUX

pp

pp

0
1
2
3
4
5

6
7
8
9

10
11

require

require

0, 1, 2, 3

4, 5

6, 7

8, 9, 10, 11

1 2

0

3 4 5

6

5

6 7 8

9 10

11

GKK 25CASC

MUX opens communication pipes

2

3 4 5

6 7 8

9 10

orb

orb

graph

MUX

graph

MUX

pp

pp

0
1
2
3
4
5

6
7
8
9

10
11

require

require

0, 1, 2, 3

4, 5

6, 7

8, 9, 10, 11

1 2

0

3 4 5

6

5

6 7 8

9 10

11

GKK 26CASC

MUX splits graphs with multiple
destinations (server-side)

2

3 4 5

6 7 8

9 10

orb

orb

graph

MUX

graph

MUX

pp

pp

0
1
2
3
4
5

6
7
8
9

10
11

require

require

0, 1, 2, 3

4, 5

6, 7

8, 9, 10, 11

2

3 4 5

6 7 8
3 4 5

6 7 8

9 10

1 2

0

3 4 5

6

5

6 7 8

9 10

11

GKK 27CASC

MUX sends pieces through
communication pipes (persistance)

2

3 4 5

6 7 8

9 10

orb

orb

graph

MUX

graph

MUX

pp

pp

0
1
2
3
4
5

6
7
8
9

10
11

require

require

5

6 7 8

9 10

11

2

3 4 5

6 7 8

3 4 5

6 7 8

9 10

1 2

0

3 4 5

6

1 2

0

3 4 5

6

5

6 7 8

9 10

11

GKK 28CASC

MUX receives graphs through pipes
& assembles them (client side)

2

3 4 5

6 7 8

9 10

orb

orb

graph

MUX

graph

MUX

pp

pp

0
1
2
3
4
5

6
7
8
9

10
11

require

require

5

6 7 8

9 10

11

2

3 4 5

6 7 8

3 4 5

6 7 8

9 10

1 2

0

3 4 5

6

3 4 5

6 7 8

9 10

11

1 2

0

3 4 5

6 7 8

1 2

0

3 4 5

6

5

6 7 8

9 10

11

GKK 29CASC

Summary
� All distributed components are containers

and subdivisable
� The smallest globally addressable unit is an

atom
� MxNRedistributable interface reduces general

component MxN problem to a 1-D array of ints
� MxN problem is a special case of the general

problem N handles to M instances
� Babel is uniquely positioned to contribute a

solution to this problem

GKK 30CASC

Tentative Research Strategy

� Finish 0.5.x line

� add serialization

� add RMI

� Add in technology
from Fast Track

Sure TrackFast Track
� Java only, no

Babel
� serialization &

RMI built-in
� Build MUX
� Experiment
� Write Paper

GKK 31CASC

Closing Remarks

� User calls without regard to data
distribution

� Developers code assuming data
distributed appropriately

� Babel does all the redistribution
between the two
� Requires Developers implementing

an interface (a.k.a. callbacks)

GKK 32CASC

Open Questions

� Non-general, Optimized Solutions
� Client-side Caching issues
� Fault Tolerance
� Subcomponent Migration
� Inter vs. Intra component

communication
� MxN , MxP, or MxPxQxN

GKK 33CASC

MxPxQxN Problem
Long-Haul Network

GKK 34CASC

MxPxQxN Problem
Long-Haul Network

GKK 35CASC

The End

GKK 36CASC

26 Apr 2001UCRL-VG-143383

Work performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48

	Tammy Dahlgren, Tom Epperly, Scott Kohn, & Gary Kumfert
	Format
	Example #1: 1-D Vectors
	Example #2: Undirected Graph
	Big Picture
	Other Complicated Tasks in CS
	Last few Rhetorical Questions
	Tale of two Customers
	Zen of Babel
	Solution
	Ramifications
	Ramifications (2)
	Now Drilling One Level Deeper...
	Babel Inserts Code between User & Developer
	Impls and Stubs and Skels
	Out of Process Components
	Remote Components
	All MxN Components inherit one interface
	MxNRedistributable Interface
	We saw something similar yesterday
	MxNRedistributable Interface in action
	Example #2: Undirected Graph
	pp->minSpanTree(graph);
	MUX generates communication schedules (client & server)
	MUX opens communication pipes
	MUX splits graphs with multiple destinations (server-side)
	MUX sends pieces through communication pipes (persistance)
	MUX receives graphs through pipes & assembles them (client side)
	Summary
	Tentative Research Strategy
	Closing Remarks
	Open Questions
	MxPxQxN Problem
	MxPxQxN Problem
	The End

